SUPPORTING INFORMATION

Platinum- and Gold-Catalyzed Cycloisomerization Reactions of Hydroxylated Enynes

Victor Mamane, Tobias Greß, Helga Krause, and Alois Fürstner*
Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
fuerstner@mpi-muelheim.mpg.de

General: All reactions were carried out under Ar in flame-dried glassware. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar: THF, $\mathrm{Et}_{2} \mathrm{O}$ (Mg-anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)$, $\mathrm{MeCN}, \mathrm{Et}_{3} \mathrm{~N}\left(\mathrm{CaH}_{2}\right), \mathrm{MeOH}(\mathrm{Mg})$, DMF, DMA (Desmodur ${ }^{8}$, dibutyltin dilaurate), hexane, toluene (Na / K). Flash chromatography: Merck silica gel 60 (230-400 mesh). NMR: Spectra were recorded on a Bruker DPX 300, AV 400 , or DMX 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.0 \mathrm{ppm}\right.$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.24 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}} \equiv 53.8 \mathrm{ppm}$; residual $\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{in}^{\mathrm{CD}} \mathrm{Cl}_{2}: \delta_{\mathrm{H}} \equiv 5.32 \mathrm{ppm}$). IR: Nicolet FT-7199 spectrometer, wavenumbers (\widetilde{v}) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). Melting points: Gallenkamp melting point apparatus (uncorrected). Elemental analyses: H. Kolbe, Mülheim/Ruhr. All commercially available compounds (Fluka, Lancaster, Aldrich) were used as received.

Starting Materials

Method A: General Procedure for the $\mathbf{P t C l}_{2}$-Catalyzed Allylation of Alkynals. A suspension of PtCl_{2} (5\%), the alkynal (1 eqiv.), and allylchlorodimethylsilane 4 (1.2 eq.) in $\mathrm{MeCN}(5 \mathrm{~mL} / \mathrm{mmol})$ was stirred for $15-20 \mathrm{~h}$ at ambient temperature. Saturated aq. NaHCO_{3} was added, the aqueous phase was repeatedly extracted with methyl tert-butyl ether, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was dissolved in THF ($25 \mathrm{~mL} / \mathrm{mmol}$) and treated with $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(300 \mathrm{mg} / \mathrm{mmol})$ for 30 min . Evaporation of the solvent and subsequent flash chromatography of the crude product
(hexanes/EtOAc mixture) afforded the corresponding homoallyl alcohols in analytically pure form.

Method B: General procedure for Allylation of Alkynals via Grignard Reaction. A solution of the alkynal (1 eq .) in THF was added to a solution of allylmagnesium bromide (1 M in $\mathrm{Et}_{2} \mathrm{O}, 1.5$ eq.) at $0^{\circ} \mathrm{C}$ and stirring was continued for 1 h . The reaction was carefully quenched with water at $0^{\circ} \mathrm{C}$ and the aqueous layer was extracted with methyl tert-butyl ether. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before they were filtered and evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc mixture) afforded the corresponding homoallylic alcohol in analytically pure form.

The physical data of the products formed by method \mathbf{A} or method \mathbf{B} are compiled below.
1-(Phenylethynyl)-but-3-en-1-ol (2a). ${ }^{1}$ Yield $=81 \%(\operatorname{method} \mathbf{A})$. IR (KAP): 3353, 3079, 3034, 2980, 2940, 2912, 2231, 1642, 1599, 1490, 1443, 1029, 993, 918, 756, $691 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.75(\mathrm{bs}, \mathrm{OH}), 2.59(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.26(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 42.2$, 62.0, 85.2, $91.1,119.1,122.5,128.3,128.4,131.7,133.0 . \mathrm{MS}$ (EI): m / z (rel intensity): 172 ([M $\left.{ }^{+}\right], 2$), 131 (100), 103 (20), 77 (18). HR-MS (CI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}+\mathrm{H}: 173.0966$; found: 173.0966.

Undec-1-en-5-yn-4-ol (2b). ${ }^{2}$ Yield $=45 \% ~(m e t h o d ~ A) . ~ I R ~(K A P): ~ 3357, ~ 3078, ~ 3006, ~ 2957, ~$ 2933, 2860, 2229, 1642, 1036, 996, $915 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.91$ (t, $J=7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{bs}, \mathrm{OH}), 2.21(\mathrm{dt}, J=7.2,2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~m}, 2 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 14.0,18.7,22.2,28.3,31.0,42.6,61.6,80.5,86.1,118.7,133.4 . \mathrm{MS}(\mathrm{EI}): m / z$ (rel intensity): 125 (100), 91 (20), 81 (57), 79 (28), 67 (20), 55 (88), 41 (45), 29 (30).

Tridec-1-en-5-yn-4-ol (2c). ${ }^{3}$ Yield = 58\% (method A). IR (KAP): 3357, 3078, 3003, 2956, 2929, 2857, 2228, 1642, 1379, 1036, 995, $914 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.89(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.70(\mathrm{bs}, \mathrm{OH}), 2.21(\mathrm{dt}, J=7,2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{dt}, J=6.1$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{dt}, J=6,2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1,18.7,22.6,28.7,28.8,31.8,80.5,86.1,118.7$, 133.4. MS (EI): m / z (rel intensity): 153 (100), 109 (37), 93 (39), 79 (29), 67 (48), 55 (59), 41 (45). Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}$ (194.32): C, 80.35; H, 11.41.

7,7’-Diethoxy-hept-1-en-5-yn-4-ol (5). Yield = 79\% (method B). IR (KAP): 3432, 3079, 2978, 2932, 2888, 2242, 1643, 1144, 1119, 1054, 1007, $917 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 1.23(\mathrm{~m}, 6 \mathrm{H}), 2.50(\mathrm{dt}, J=7.4,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{t}, J$ $=7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.9,41.7,60.8,60.85,61.3,80.4,85.5,91.1,119.1,132.6$. MS (EI): m / z (rel intensity): 197 ([M $\left.{ }^{+}-\mathrm{H}\right], 3$), 157 (6), 153 (33), 111 (100), 103 (49), 83 (55),

[^0]79 (37), 55 (33). Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}$ (198.26): C, 66.64; H, 9.15; found: $\mathrm{C}, 66.52$; H , 9.07 .

4,4-Dimethyl-1-phenyl-hex-5-en-1-yn-3-ol (7). Yield = 77\% (method B). IR (film): 3426, 3082, 3062, 2968, 2930, 2871, 2198, 1639, 1598, 1573, 1490, 1443, 1056, 1032, 1000, 980, $916,756,691 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 6.01(\mathrm{dd}, J=$ $11.1,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{bs}, \mathrm{OH}), 1.19(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.7,131.7,128.4,128.3,122.7,114.6,88.2,86.0,70.5,42.4$, 23.1, 22.5. MS (EI): m / z (rel intensity): 200 ([M $\left.{ }^{+}\right], 3$), 185 (9), 131 (100), 103 (22), 77 (25), 70 (46), 51 (7), 41 (18). HR-MS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}+\mathrm{Na}$: 223.1099; found: 223.1097. Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$ (200.28): C 83.96, H 8.05; found: C 84.11, H 8.11.

1-Cyclohex-2-enyl-3-phenyl-prop-2-yn-1-ol (9). Yield $=69 \%(\operatorname{method} \mathbf{A})$. IR (film): 3353, 3059, 3080, 3022, 2927, 2861, 2836, 2228, 1649, 1598, 1572, 1489, 1444, 1029, 756, 691 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=$ $1.8, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{bs}, \mathrm{OH}), 1.95(\mathrm{~m}, 1 \mathrm{H})$, $1.83(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.8,130.4,128.4,128.3,126.9$, 122.7, 89.1, 85.7, 66.5, 42.4, 25.2, 24.6, 21.1. MS (EI): m / z (rel intensity): 212 ([M $\left.{ }^{+}\right], 4$), 131 (100), 103 (13), 77 (13), 53 (3), 41 (3). HR-MS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}: 212.1201$; found: 212.1204. Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$ (212.29): C 84.87, H 7.60; found: C 85.06, H 7.68.

7-(tert-Butyl-dimethyl-silanoxy)-oct-1-en-5-yn-4-ol (11). Yield = 82% (method B). IR (KAP): 3359, 3080, 2982, 2956, 2931, 2887, 2858, 2217, 1643, 1473, 1464, 1255, 1102, $1030,1004,917,836,779 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.13$ (d, $J=3.8 \mathrm{~Hz}, 6 \mathrm{H}$), 0.91 $(\mathrm{s}, 9 \mathrm{H}), 1.41(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.47(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{q}, J=$ $7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta-3.7,-3.8,18.1,25.2,25.7,41.9,58.8,61.4,83.2,89.1,118.8,132.9$. MS (EI): m / z (rel intensity): 254 (1), 213 (8), 197 (7), 75 (100). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$ (254.45): C, 66.09; H, 10.30; found: C, 66.14; H, 10.18.
 added to a solution of but-3-yn-2-ol ($0.8 \mathrm{~mL}, 10 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 15 min , a solution of 5 -bromo- 1 -pentene ($1.5 \mathrm{~g}, 10 \mathrm{mmol}$) and HMPA ($5.2 \mathrm{~mL}, 30$ mmol) in THF (10 mL) was introduced and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h before it was allowed to reach ambient temperature overnight. The reaction was quenched with aq. $\mathrm{HCl}(1 \mathrm{M})$, the aqueous layer was extracted with methyl tert-butyl ether, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc 9/1) to give alcohol 13a as a colorless oil ($590 \mathrm{mg}, 43 \%$). IR (KAP): 3341, 3078, 2980, 2934, 2863, 2843, 2247, 1641, 1076, 999, $913 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.63$ (quint, $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.73(\mathrm{bs}, \mathrm{OH}), 2.20(\mathrm{~m}, 4 \mathrm{H}), 4.51(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{ddd}, J=10.4,2.2,1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04(\mathrm{dt}, J=19.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.9,24.6$, 26.9, 27.7, 32.6, 58.5, 82.4, 84.2, 115.1, 137.7. MS (EI): m / z (rel intensity): 137 ([$\left.\mathrm{M}^{+}\right], 3$), 123

[^1](21), 109 (21), 105 (45), 95 (44), 91 (29), 81 (31), 79 (69), 77 (29), 67 (62), 55 (56), 43 (100), 27 (28). Anal. calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}$ (138.21): C, $78.21 ; \mathrm{H}, 10.21$; found: C, 78.11 ; H, 10.09.

1-Phenyl-oct-7-en-2-yn-1-ol (13b). Prepared analogously (57\%). IR (KAP): 3365, 3064, 3031, 2976, 2935, 2861, 2226, 1641, 1602, 1493, 1453, 1030, 993, 915, 760, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.67$ (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.86(\mathrm{bs}, \mathrm{OH}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 2.32$ (dt, $J=7.2,2 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{dd}, J=9.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=17.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ $(\mathrm{m}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.1,27.6,32.7,64.8$, 80.1, 87.2, 115.2, 126.5, 128.1, 128.4, 137.6, 141.1. MS (EI): m / z (rel intensity): 200 ([M $\left.{ }^{+}\right]$, 8), 199 (27), 171 (38), 167 (27), 157 (52), 141 (37), 129 (68), 115 (66), 105 (100), 91 (77), 77 (89), 51 (27), 39 (28). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$ (200.28): C, 83.96; H, 8.05; found: C, 83.84; H, 8.12.

Buta-2,3-dienyl-trimethyl-silane (16). To a solution of propargyl alcohol ($2.9 \mathrm{~mL}, 50 \mathrm{mmol}$) and tosyl chloride $(11.4 \mathrm{~g}, 60 \mathrm{mmol})$ at $-5^{\circ} \mathrm{C}$ was added powdered $\mathrm{KOH}(0.5 \mathrm{~mol}, 28 \mathrm{~g})$ in several portions while maintaining the internal temperature between $-5^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$, the reaction mixture was poured into 100 mL of ice-water and the product was extracted with methyl tert-butyl ether ($2 \times 100 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent provides propargyl tosylate as a pale-brown oil which was used in the next step without purification ($9.1 \mathrm{~g}, 87 \%$). Characteristic data: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.70(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$. To a suspension of $\mathrm{LiCl}(3.7 \mathrm{~g}, 86.7 \mathrm{mmol})$ in diethyl ether was added $\mathrm{CuCN}(44.9 \mathrm{mmol}, 4 \mathrm{~g})$ and the mixture was cooled to $0^{\circ} \mathrm{C}$. A solution of $\mathrm{TMSCH}_{2} \mathrm{MgCl}\left(1 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}, 44 \mathrm{~mL}, 44 \mathrm{mmol}\right.$, $)$ was slowly added and stirring was continued for 40 min . The mixture was then cooled to $-78^{\circ} \mathrm{C}$ before the crude propargyl tosylate prepared above ($9.1 \mathrm{~g}, 43.33 \mathrm{mmol}$) was slowly added. The mixture was allowed to reach ambient temperature over 17 h . For work-up, the precipitate was filtered off, the filtrate was concentrated and the residue was distilled at atmospheric pressure ($\mathrm{bp} \approx 100^{\circ} \mathrm{C}$) to give the title compound as a colorless liquid ($3.6 \mathrm{~g}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.04(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{dt}, J=8.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{dt}, J=6.7,2.7 \mathrm{~Hz}$, $2 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-2.0,17.1,73.9,86.3,208.9$.

Compound 17. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{~g}, 8.7 \mathrm{mmol})$ was added to a solution of aldehyde $\mathbf{1 5}(384 \mathrm{mg}$, $4 \mathrm{mmol})^{5}$ and 2,3-butadienyl-trimethylsilane $16(1.10 \mathrm{~g}, 8.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 5.5 h at that temperature. The reaction was quenched with aq. sat. NaHCO_{3} while cold, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was slowly distilled off at 550 Torr (bath temperature ca. $30^{\circ} \mathrm{C}$), and the residue was purified by flash chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 40: 1$) to give alcohol $\mathbf{1 7}$ as a colorless liquid ($300 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.14(\mathrm{~s}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{br} ., 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ (dd, J $=17.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.5,22.7,62.7,78.3,92.6,115.5$, 116.0, 135.0, 145.5; MS (EI): m/z (rel intensity): 149 (7), 135 (100), 117 (30), 107 (89), 91 (97), 79 (90), 67 (41), 53 (46).

[^2]
Products

General Procedure for the $\mathbf{P t C l}_{\mathbf{2}}$-Catalyzed Cycloisomerization Reaction. PtCl_{2} (5\%) was added to a solution of the enyne in toluene ($5 \mathrm{~mL} / \mathrm{mmol}$) and the resulting mixture was stirred at $60-80^{\circ} \mathrm{C}$ until the reaction was complete (GC/MS and TLC). The solvent was evaporated and the residue was purified by flash chromatography (hexanes/EtOAc mixture) to give the bicyclo[3.1.0]hexanone derivative in analytically pure form. The physical data of the compounds thus formed are compiled below.
'One-Pot' Allylation/Cycloisomerization Cascade. PtCl_{2} ($13.3 \mathrm{mg}, 15 \%$) was added to a solution of aldehyde $1(65 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{MeCN}(2.5 \mathrm{~mL})$ followed by allylchlorodimethylsilane $4(151 \mathrm{mg}, 0.6 \mathrm{mmol})$ and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, TBAF $3 \mathrm{H}_{2} \mathrm{O}(160 \mathrm{mg})$ was introduced and the mixture was stirred for 30 min at room temperature. Saturated aq. NaHCO_{3} was then added, the aqueous phase was repeatedly extracted with methyl tert-butyl ether, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc mixture) to give product 3a in analytically pure form ($47 \mathrm{mg}, 55 \%$). For the analytical and spectroscopic data, see below.

1-Phenyl-bicyclo[3.1.0]hexan-3-one (3a). IR (KAP): 3466, 3060, 3035, 2982, 2942, 2905, 2804, 1743, 1602, 1578, 1499, 1445, 755, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.66$ (dd, $J=5.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{dd}, J=8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.66(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (ddd, $J=17.7,5.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ (ddd, $J=17.4,3.4,2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.8,23.1,27.6,42.2,45.6$, 125.7, 126.0, 128.4, 143.0, 216.5. MS (EI): m / z (rel intensity): 172 ([M $\left.{ }^{+}\right], 42$), 144 (91), 129 (100), 115 (29), 103 (46), 77 (23). Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}$ (172.23): C, 83.69; H, 7.02; found: C, 83.59; H, 7.11. HR-MS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}: 172.0888$; found: 172.0890 .

2-Deutero-1-phenyl-bicyclo[3.1.0]hexan-3-one (3a-D. $)$. IR (KAP): 3460, 3060, 3035, 2983, 2941, 2905, 2804, 2180, 1743, 1602, 1499, 1446, 755, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 0.66(\mathrm{dd}, J=5.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=18.8 \mathrm{~Hz}$, 1 H), $2.64(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (ddd, $J=18.7,5.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, 1 H), 7.20-7.40 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 21.9,23.4,27.9,42.5,45.5\left(\mathrm{~m}, \mathrm{~J}_{\mathrm{C}}\right.$ д), 126.1, 126.2, 128.7, 143.7, 216.3. MS (EI): m / z (rel intensity): 173 ([M $\left.{ }^{+}\right], 44$), 145 (100), 130 (82), 116 (18), 104 (43).

1-Pentyl-bicyclo[3.1.0]hexan-3-one (3b). IR (KAP): 3056, 3033, 2956, 2926, 2856, 2872, $1746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.10(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.75(\mathrm{ddd}, J=8,4.9,2$ $\mathrm{Hz}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{H})$, $2.24(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=17.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.0,18.7,19.0,22.6,24.7,27.3,31.9,36.0,42.4,45.0,218.5$. MS (EI): m / z (rel intensity): 166 ([M $\left.{ }^{+}\right], 8$), 124 (23), 110 (15), 95 (47), 82 (41), 67 (100), 55 (29), 41 (35). Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}$ (166.27): C, 79.46; H, 10.91; found: C, 79.60; H, 10.96 .

1-Heptyl-bicyclo[3.1.0]hexan-3-one (3c). IR (KAP): 3470, 3056, 3033, 2956, 2925, 2854, $1746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.10(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.75$ (ddd, $J=8,4.9,2$ $\mathrm{Hz}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.40(\mathrm{~m}, 12 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{H})$, $2.24(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=17.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=17.4,4.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1,18.7,19.1,22.7,24.7,29.3,27.7,31.9,36.1,42.5,45.1$, 218.5. MS (EI): m/z (rel intensity): 194 ([M $\left.{ }^{+}\right], 8$), 152 (23), 110 (24), 95 (57), 82 (53), 67 (100), 55 (28), 41 (39). Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}$ (194.32): C, 80.35 ; H, 11.41; found: C, 80.18; H, 11.30.

4,4-Dimethyl-1-phenyl-bicyclo[3.1.0]hexan-3-one (8). IR (film): 3060, 3026, 2966, 2929, 2868, 1742, 1603, 1580, 1501, 758, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33(\mathrm{~m}, 2 \mathrm{H})$, $7.22(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{dd}, J=2.5,18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=4.6$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.54(\mathrm{dd}, J=4.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 219.7,143.1,128.5,126.2,125.8,48.7,44.4,34.8,26.6,24.9,20.9,20.4$. MS (EI): m / z (rel intensity): 200 ([M $\left.{ }^{+}\right], 31$), 172 (56), 157 (100), 143 (32), 129 (55), 115 (21), 103 (37), 91 (16), 83 (53), 77 (23), 70 (6), 51 (10), 41 (15). HR-MS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$ + Na: 223.1099; found: 223.1098. Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}: \mathrm{C} 83.96, \mathrm{H} 8.05$; found: C 83.88, H 7.97 .

2a-Phenyl-octahydro-cyclopropa[cd]inden-1-one (10). IR (film): 3058, 3029, 2938, 2870, 1739, 1602, 1498, 1446, 747, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (m, 3H), 2.96 (ddd, $J=1.0,2.5,19.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=1.0,19.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H})$, $2.15(\mathrm{dd}, J=6.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 222.3,144.7,128.5,125.8,43.8,43.028 .9,27.1,24.5,24.1,18.9$, 17.5. MS (EI): m / z (rel intensity): 212 ([M $\left.{ }^{+}\right], 30$), 184 (100), 169 (34), 155 (35), 141 (52), 128 (27), 115 (19), 103 (27), 91 (21), 77 (22), 51 (7), 39 (6). HR-MS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$: 212.1201; found: 212.1204. Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$: C 84.87, H 7.60; found: C 84.86, H 7.57.

1-(tert-Butyl-dimethyl-silanoxy)-bicyclo[3.1.0]hexan-3-one (12). Mixture of two diastereomers as shown in the insert (d.r. $=3: 1$); the assignment of the isomers is
 unambiguous (based on 1D and 2D spectra) and follows the numbering scheme shown in the insert. Spectroscopic data of the major isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.35$ (q, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 2.81 (ddt, $J=1.3$, $2.2,18.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 2.58$ (ddd, $J=1.7$, $5.8,19.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 2.16$ (dd, $J=1.2$, $19.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~b}), 2.10(\mathrm{dd}, J=1.2,18.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.36$ (ddd, $J=4.2,5.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.17(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12), 0.86$ (s, 9H, H-9), 0.78 (ddt, $J=2.0,6.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 0.16$ (dd, $J=4.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b})$, 0.02 (s, 3H, H-10), 0.01 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-11$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 217.9(\mathrm{C}-3), 72.1(\mathrm{C}-$ 7), 42.1 (C-4), 40.1 (C-2), 31.3 (C-1), 25.7 (C-9), 22.2 (C-12), 18.8 (C-5), 18.0 (C-8), 17.0 (C-6), $-4.5(\mathrm{C}-10),-4.6(\mathrm{C}-11)$. Spectroscopic data of the minor isomer: ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.81(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 2.57$ (ddd, $\left.J=2,5.8,19.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}\right), 2.49$ (ddt, $J=1.2,2.2,18.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 2.18$ (dd, $J=1.2,19.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~b}), 2.15$ (dd, $J=$
$1.2,19.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 1.46 (ddd, $J=4.1,5.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 1.15 (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-$ 12), 1.00 (ddt, $J=2.0,5.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 0.85(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}-9), 0.04$ (dd, $J=4.6,5.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 0.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10), 0.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 217.7$ (C3), 69.5 (C-7), 42.8 (C-2), 42.1 (C-4), 30.8 (C-1), 25.7 (C-9), 22.1 (C-12), 18.1 (C-8), 16.2 (C-5), 15.9 (C-6), -4.4 (C-10), -4.8 (C-11). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$ (254.45): C, 66.09; H, 10.30; found: C, 66.02; H, 10.29.

1-Bicyclo[3.1.0]hex-1-yl-propan-2-one (14a). ${ }^{6}$ IR (KAP) 3061, 3020, 2997, 2939, 2939, 2881, 2861, 1711, $1356 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.38$ (dd, $J=8.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $0.52(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1.07(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.80(\mathrm{~m}, 5 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.3,21.3,23.5,24.9$, 27.3, 29.9, 31.5, 50.5, 209.0. MS (EI): m / z (rel intensity): 138 ([M $\left.{ }^{+}\right], 2$), 123 (5), 95 (45), 80 (53), 67 (26), 43 (100). Anal. calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}$ (138.21): C, 78.21 ; H, 10.21; found: C, 78.33 ; H, 10.06.

2-Bicyclo[3.1.0]hex-1-yl-1-phenyl-ethanone (14b). IR (KAP) 3060, 3025, 2997, 2943, 2881, 2860, 1690, 1597, 1580, 1448, 752, $690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.37$ (dd, $J=$ $8.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.51(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1.13(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.90(\mathrm{~m}, 5 \mathrm{H}), 3.07(\mathrm{~d}, J$ $=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}), 8.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.4,21.4,23.5,25.1,27.5,32.1,128.2,128.5,132.8,137.6$, 199.9. MS (EI): m / z (rel intensity): 200 ([M $\left.{ }^{+}\right], 10$), 105 (100), 77 (33). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$ (200.28): C, 83.96; H, 8.05; found: C, 84.08; H, 8.00.

Sabinone (18). A suspension of PtCl_{2} ($32 \mathrm{mg}, 0.12 \mathrm{mmol}$) and diene 17 ($300 \mathrm{mg}, 2.0 \mathrm{mmol}$) in benzene (15 mL) was stirred for 40 h at $60^{\circ} \mathrm{C}$. For work up, the solvent was evaporated and the product was purified by flash chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 50: 1$) to give sabinone $\mathbf{1 8}$ as a colorless oil ($233 \mathrm{mg}, 78 \%$). The physical data are in agreement with those reported in the literature. ${ }^{7}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.41(\mathrm{dd}, J=3.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 3 H), 0.94 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.04 (ddd, $J=2.9,5.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{dd}, J=$ $3.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=19.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=2.6,19.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.73$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.5,19.6,21.8,26.4,30.4,32.7,41.5,113.5,148.0$, 206.1; MS (EI): m / z (rel intensity): 150 ([M $\left.{ }^{+}\right], 17$), 135 (29), 122 (16), 108 (100), 91 (17), 79 (55), 67 (5), 53 (36), 41 (24).

Sabinol (19). NaBH_{4} ($65 \mathrm{mg}, 1.74 \mathrm{mmol}$) was added to a stirred solution of ketone $\mathbf{1 8}$ (200 $\mathrm{mg}, 1.3 \mathrm{mmol})$ and $\mathrm{CeCl}_{3}(426 \mathrm{mg}, 1.74 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 10 min at that temperature, the reaction was quenched with water, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated, and the residue was purified by flash chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 25: 1$) to afford alcohol 19 as a colorless oil ($135 \mathrm{mg}, 65 \%$, d.r. $=1: 1$). Analytically pure samples of the individual isomers were obtained by preparative GC which showed the following

[^3]spectroscopic data: ${ }^{8}$ IR (KAP): 3341, 2957, 2872, 1660, 1464, 1364, 1090, 1068, 1040, 879, $828,785 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): m / z (rel intensity): 151 (2), 134 (21), 119 (25), 109 (26), 91 (100), 81 (57), 67 (13), 55 (26). trans-19: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.79$ (ddd, $J=2.1,4.2,6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 0.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{br}$, 1 H), 1.42 (hept., $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{dd}, J=3.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.04 (ddd, $J=2.1,7.4,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.5,19.7,20.0,28.9,32.5,37.2,37.7,75.1,106.7,157.2 ;$ cis-19: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.54(\mathrm{dd}, J=3.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.62(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.38$ (hept., $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.55$ $(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=3.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=7.6,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.8,19.4,19.6$, 27.8, 32.9, 33.4, 37.6, 71.4, 101.9, 156.1.

Acetic acid 1-phenylethynyl-but-3-enyl ester (20). Acetic anhydride ($1.3 \mathrm{~mL}, 13.3 \mathrm{mmol}$) and 4-dimethylaminopyridine $(0.162 \mathrm{~g}, 1.33 \mathrm{mmol})$ were added to a solution of alcohol $\mathbf{2 a}$ $(0.450 \mathrm{~g}, 2.61 \mathrm{mmol})$ in triethylamine $(4 \mathrm{~mL})$. After stirring for 1 h , the mixture was poured on chilled water, the aqueous phase was extracted with tert-butyl methyl ether, the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated, and the crude product was purified by flash chromatography (hexane/ethyl acetate, 15:1) to give acetate $\mathbf{2 0}$ as a yellow liquid ($0.475 \mathrm{~g}, 85 \%$). IR (film): 3081, 3021, 2981, 2937, 2233, 1745, 1643, 1599, 1573, 1491, 1443, 1230, 1021, 990, 922, 758, $692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.3,132.3,131.9,128.7,128.3,122.2$, 118.8, 86.0, 85.8, 63.7, 39.4, 21.0. MS (EI): m / z (rel intensity): 214 ([M $\left.{ }^{+}\right], 1$), 172 (81), 154 (21), 131 (99), 115 (11), 105 (26), 91 (3), 77 (15), 63 (6), 51 (7), 43 (100), 39 (5). HR-MS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}+\mathrm{Na}$: 237.0891; found: 237.0894. Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$: C 78.48, H 6.59; found: C 78.36, H 6.65.

1-Phenyl-bicyclo[3.1.0]hexan-2-one (22). A solution of acetate $20(0.200 \mathrm{~g}, 0.933 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$ was added to a suspension of $\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}(9.25 \mathrm{mg}, 18.7 \mu \mathrm{~mol})$ and $\mathrm{AgSbF}{ }_{6}$ ($6.43 \mathrm{mg}, 18.7 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL}$). After stirring at ambient temperature for 15 min , the solvent was evaporated and the crude product was dissolved in methanol (8 mL). $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(12.9 \mathrm{mg})$ was added and the suspension was stirred for 1 h before the reaction was quenched with water and the aqueous phase was extracted with tert-butyl methyl ether. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated, and the residue was purified by flash chromatography (hexane/ethyl acetate, $4: 1+1 \%$ triethylamine, v / v) to give ketone 22 as a yellow liquid ($0.119 \mathrm{~g}, 74 \%$). IR (film): 3059, 3029, 3000, 2944, 2877, 1722, 1603, 1500, 1446, 753, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}$, $1 \mathrm{H}), 2.28(\mathrm{~m}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{dd}, J=4.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 213.0,136.3,129.1,128.4,127.1,41.3,32.7,29.5,21.8,20.9$. MS (EI): m / z (rel. intensity): 172 ([$\left.\mathrm{M}^{+}\right], 99$), 157 (3), 144 (100), 129 (91), 116 (99), 103(81), 89 (17), 77

[^4](30), 63 (19), 51 (23), 39 (22), 27 (9). HR-MS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}$: 172.0888; found: 172.0891. Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}$: C 83.69, H 7.02; found: C 83.58, H 6.96.

Although the enol-acetate $\mathbf{2 1}$ is labile and is therefore best processed in situ, it can be isolated in analytically pure form by chromatography on Alox. It shows the following analytical and spectroscopic properties: IR (film): 3061, 3029, 2995, 2909, 2844, 1759, 1650, 1603, 1580, 1498, 1207, 755, $699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27$ (m, 2H), 7.25 (m, 2H), 7.19 $(\mathrm{m}, 1 \mathrm{H}), 5.21(\mathrm{dt}, J=1.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{ddd}, J=2.2,7.0,17.3 \mathrm{~Hz}, 1 \mathrm{H})$,

2.38 (dd, $J=2.4,17.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.96 (s, 3H), 1.73 (dddd, $J=1.9,4.6,8.3,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=4.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(150$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.4,153.9,138.7,128.6,128.2,126.4,109.9,36.8,30.9$, 25.0, 20.8, 20.6. MS (EI): m / z (rel intensity): 214 ($\left[\mathrm{M}^{+}\right], 5$), 172 (100), 157 (11), 143 (9), 129 (25), 115 (18), 105 (6), 91 (17), 77 (9), 66 (7), 51 (6), 43 (28), 39 (7). HR-MS (EI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$: 214.0994; found: 214.0996. Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$: C 78.48, H 6.59; found: C 78.34, H 6.65.

4-Methyl-1-phenyl-bicyclo[3.1.0]hexan-3-one (24). The assignment is unambiguous (based

on 1D and 2D spectra), following the numbering scheme shown in the insert.
IR (KAP): 3461, 3060, 3027, 2967, 2931, 2872, 1741, 1603, 1499, 1452, 760, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.22(\mathrm{~m}$, 2 H), 2.98 (ddd, $J=1.4,2.4,18.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.60 (d, $J=18.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2b), 2.39 (dq, $J=1.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 1.71$ (dd, $J=4.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 1.29 (ddd, $J=2.5,5.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.26 (d, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-7$), 0.64 (dd, $J=4.6$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 219.8(\mathrm{C}-3), 143.1(\mathrm{Ph}), 128.5(\mathrm{Ph}), 126.2$ (Ph), 125.7 (Ph), 47.6 (C-4), 44.4 (C-2), 28.9 (C-5), 27.3 (C-1), 22.8 (C-6), 18.2 (C-7). MS (EI): m / z (rel intensity): 186 ([$\left.\mathrm{M}^{+}\right], 28$), 158 (88), 143 (100), 129 (72), 115 (25), 103 (47), 77 (26). Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}$ (186.26): C, 83.83; H, 7.58; found: C, 83.75; H, 7.54.

4-Methyl-1-phenyl-bicyclo[3.1.0]hexan-3-one (25). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28$ 7.33 (m, 2H), 7.16-7.22 (m, 2H), 2.99 (dt, $J=2.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 2.90$
 (m, 1H, H-4), 2.63 (d, $J=18.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 2.08$ (ddd, $J=4.6,5.6,8.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 1.13$ (m, 1H, H-6a), 1.12 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-7$), 0.52 (dd, $J=4.6$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 216.8$ (C-3), $143.0(\mathrm{Ph})$, $128.5(\mathrm{Ph}), 126.1(\mathrm{Ph}), 126.0(\mathrm{Ph}), 45.5(\mathrm{C}-2), 45.3(\mathrm{C}-4), 28.5(\mathrm{C}-5), 25.1(\mathrm{C}-$ 1), 19.9 (C-6), 12.3 (C-7). MS (EI): m / z (rel intensity): 186 ([M $\left.{ }^{+}\right], 28$), 158 (88), 143 (100), 129 (72), 115 (25), 103 (47), 77 (26).

[^0]: ${ }^{1}$ Padwa, A.; Dean, D. C.; Fairfax, D. J.; Xu, S. L. J. Org. Chem. 1993, 58, 4646
 ${ }^{2}$ Journet, M.; Malacria, M. J. Org. Chem. 1992, 57, 3085
 ${ }^{3}$ Roush, W. R.; Park, J. C. J. Org. Chem. 1990, 55, 1143

[^1]: ${ }^{4}$ Roush, W. R.; Spada, A. P. Tetrahedron Lett. 1982, 23, 3773.

[^2]: ${ }^{5}$ Aoyagi, S.; Wang, T.-C.; Kibayashi, C. J. Am. Chem. Soc. 1993, 125, 11393.

[^3]: ${ }^{6}$ Katz, T. J.; Yang, G. X-Q. Tetrahedron Lett 1991, 5895
 7 Sirisoma, N. S.; Höld, K. M.; Casida, J. E. J. Agric. Food Chem. 2001, 49, 1915.

[^4]: 8 (a) Cooper, M. A.; Holden, C. M.; Laftus, P.; Whittaker, D. J. Chem. Soc. Perkin Trans. II 1973, 665; (b) Ohloff, G.; Uhde, G.; Thomas, A. F.; Kovats, E. S. Tetrahedron 1966, 22, 309.

